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Motivation
• Reinforcement learning (RL) excels at trail-and-error, but struggles with prior knowledge, long horizon planning, reward design, 

sample efficiency, and interpretability.
• Large Language Models (LLMs) and vision-language models (VLMs) contribute world knowledge, reasoning, and perception that can 

address these gaps.
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LLM/VLM as Agent
• LLM/VLM is the policy.
• Parametric agents – lightweight fine-tuning with RL improves 

adaptability and sample efficiency.
• Non-parametric agents – no fine-tuning; rely on in-context 

learning, memory, and self-reflection to scale and generalize.
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LLM/VLM as Planner
• LLM/VLM decomposes complex tasks into sub-goals that a 

low-level controller executes.
• Comprehensive planning – LLM/VLM proposes all sub-goals 

at once; efficient but brittle in dynamic settings.
• Incremental planning – LLM/VLM proposes sub-goals on 

the fly; robust to feedback but increases query cost
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LLM/VLM as Reward

def reward(s) 

    return abs(s)
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LLM/VLM as Reward
• LLM/VLM specifies reward code or trains/acts as a reward 

model.
• Reward function generation – LLM/VLM writes/refines reward 

code from environment abstractions and feedback, often 
matching/surpassing expert designed reward functions.

• Reward models – LLM/VLM maps trajectories to scalar 
rewards or provides preferences.

Open Problems
• Grounding – bridge natural language plans to low-level control without brittle interfaces.
• Inherent bias – debias decisions, plans, and rewards; analyze failure modes.
• Representation - fuse numeric sensors with language for precise control; explore multi-modal encoders.
• Action advice – use LLMs/VLMs as imperfect but helpful teachers to accelerate RL agent learning.

Inclusion Criteria
• Integrate a foundation model (LLM or VLM) into the RL framework.
• Frame tasks as Markov decision processes (MDPs). 
• Use the RL reward signal to guide learning.
• Use LLMs/VLMs developed from GPT-3 (2020) onward.
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