

The Evolving Landscape of LLM- and VLM- Integrated Reinforcement Learning

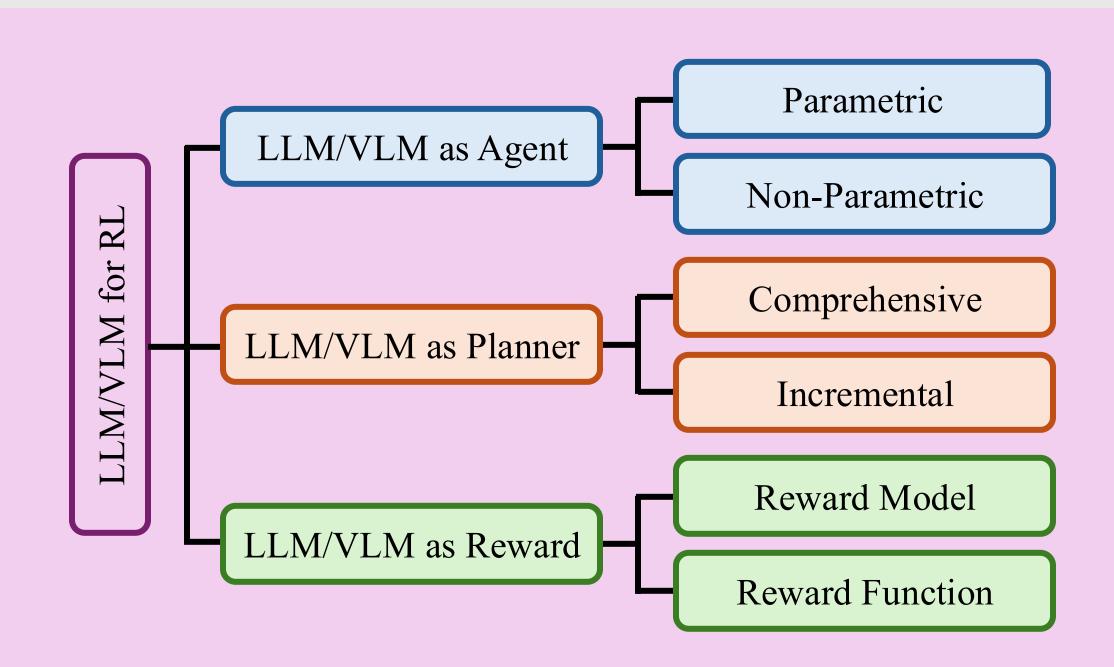
Sheila Schoepp¹, Masoud Jafaripour^{1*}, Yingyue Cao^{1*}, Tianpei Yang², Fatemeh Abdollahi¹, Shadan Golestan³, Zahin Sufiyan¹, Osmar R. Zaiane^{1,3}, and Matthew E. Taylor^{1,3}

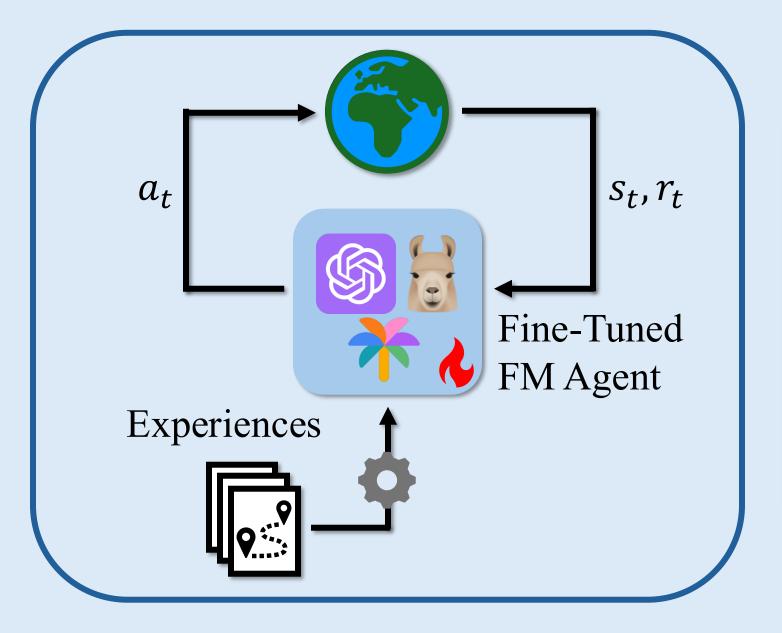
Motivation

- Reinforcement learning (RL) excels at trail-and-error, but struggles with prior knowledge, long horizon planning, reward design, sample efficiency, and interpretability.
- Large Language Models (LLMs) and vision-language models (VLMs) contribute world knowledge, reasoning, and perception that can address these gaps.

Inclusion Criteria

- Integrate a foundation model (LLM or VLM) into the RL framework.
- Frame tasks as Markov decision processes (MDPs).
- Use the RL reward signal to guide learning.
- Use LLMs/VLMs developed from GPT-3 (2020) onward.



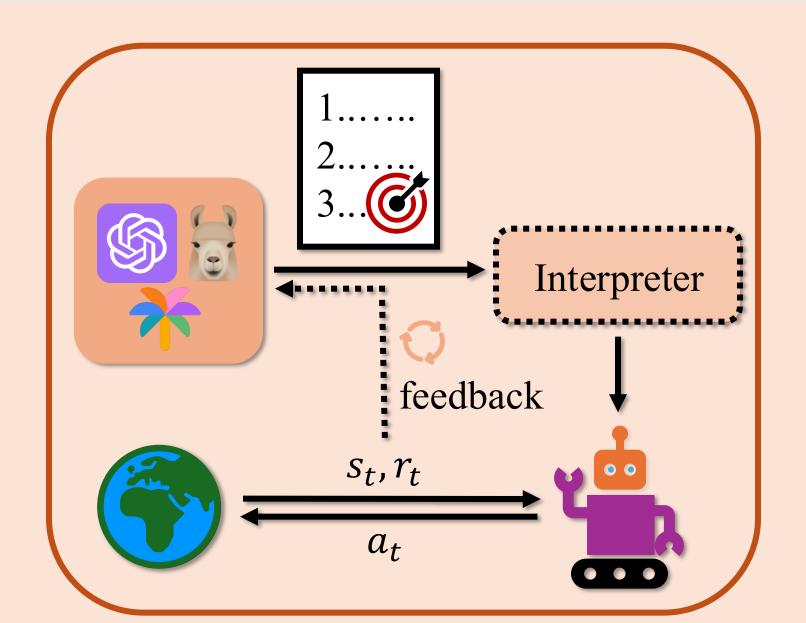


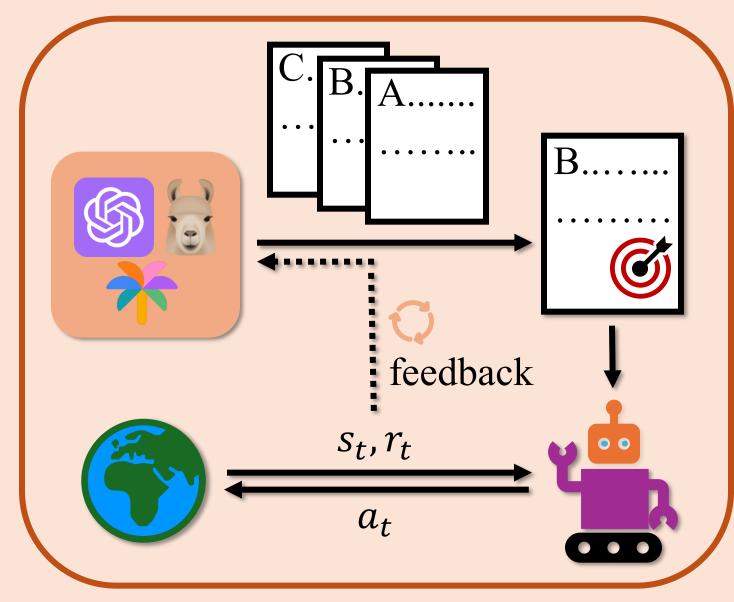
LLM/VLM as Agent

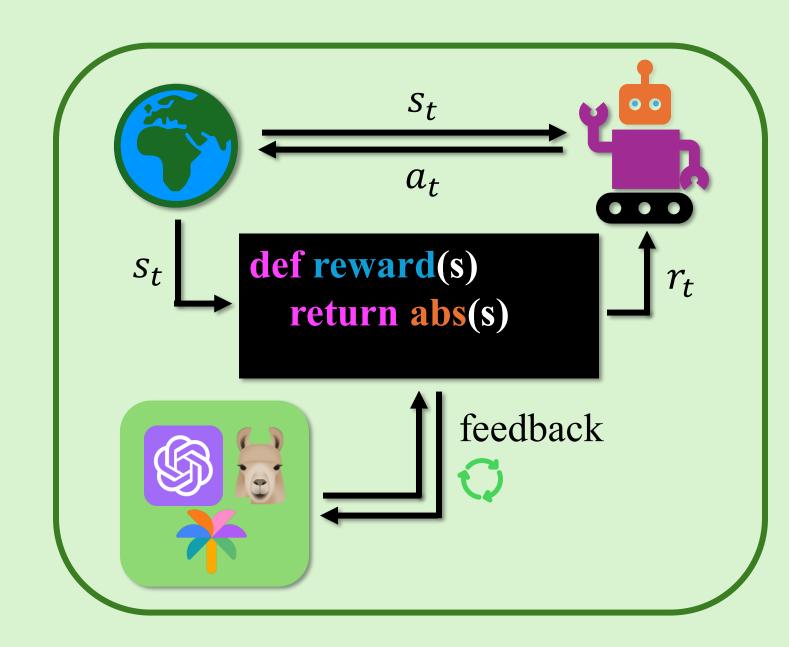
- LLM/VLM is the policy.
- Parametric agents lightweight fine-tuning with RL improves adaptability and sample efficiency.
- Non-parametric agents no fine-tuning; rely on in-context learning, memory, and self-reflection to scale and generalize.

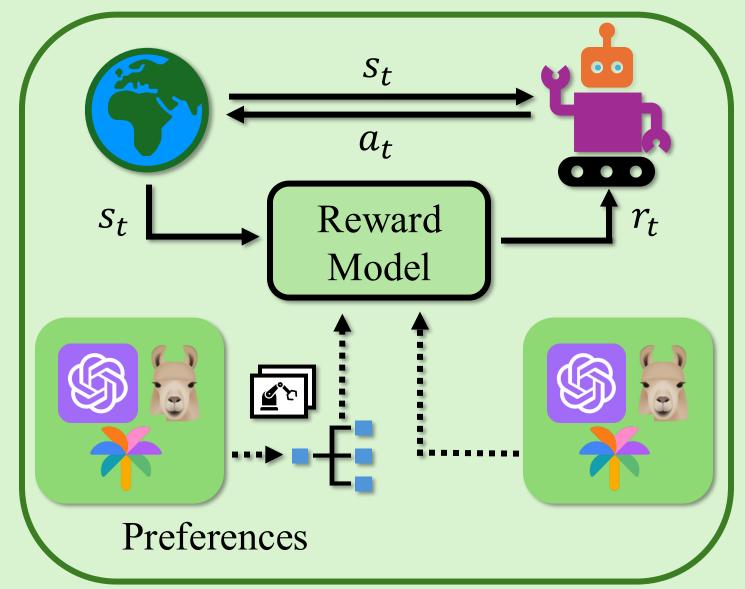
LLM/VLM as Planner

- LLM/VLM decomposes complex tasks into sub-goals that a low-level controller executes.
- Comprehensive planning LLM/VLM proposes all sub-goals at once; efficient but brittle in dynamic settings.
- Incremental planning LLM/VLM proposes sub-goals on the fly; robust to feedback but increases query cost







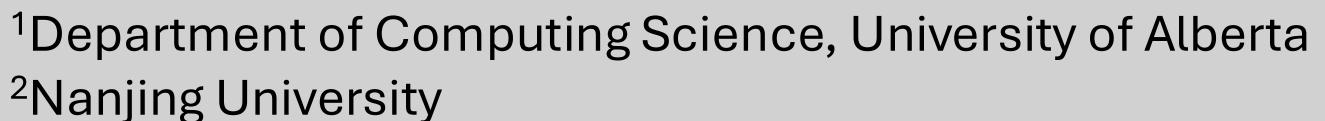


LLM/VLM as Reward

- LLM/VLM specifies reward code or trains/acts as a reward model.
- Reward function generation LLM/VLM writes/refines reward code from environment abstractions and feedback, often matching/surpassing expert designed reward functions.
- Reward models LLM/VLM maps trajectories to scalar rewards or provides preferences.

Open Problems

- Grounding bridge natural language plans to low-level control without brittle interfaces.
- Inherent bias debias decisions, plans, and rewards; analyze failure modes.
- Representation fuse numeric sensors with language for precise control; explore multi-modal encoders.
- Action advice use LLMs/VLMs as imperfect but helpful teachers to accelerate RL agent learning.



³Alberta Machine Intelligence Institute (Amii)

