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Motivation
* Reinforcement learning (RL) excels at trail-and-error, but struggles with prior knowledge, long horizon planning, reward design,
sample efficiency, and interpretability.
* Large Language Models (LLMs) and vision-language models (VLMs) contribute world knowledge, reasoning, and perception that can
address these gaps.
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Inclusion Criteria
* [ntegrate a foundation model (LLM or VLM) into the RL framework.
* Frame tasks as Markov decision processes (MDPs).

* Use the RLreward signal to guide learning.
* Use LLMs/VLMs developed from GPT-3 (2020) onward.
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‘ ‘ LLM/VLM as Agent
A St Tt At vt ¢ LLM/VLM is the policy.
= = * Parametric agents - lightweight fine-tuning with RL improves

= Fine-Tuned > Frozen adaptability and sample efficiency.
" FM Agent * FM Agent : : S :
Experiences * Non-parametric agents — no fine-tuning; rely on in-context
j learning, memory, and self-reflection to scale and generalize.

O

LLM/VLM as Planner

 LLM/VLM decomposes complex tasks into sub-goals that a
low-level controller executes.

* Comprehensive planning - LLM/VLM proposes all sub-goals : l :
at once; efficient but brittle in dynamic settings. : feedback : foedback !
* |ncremental planning - LLM/VLM proposes sub-goals on St) Tt St) Tt
the fly; robust to feedback but increases query cost 4 t.l ‘ 4
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s, LLM/VLM as Reward
‘ a, * LLM/VLM specifies reward code or trains/acts as a reward
model.
>t L det (5) * Reward function generation — LLM/VLM writes/refines reward

return abs(s) . .
code from environment abstractions and feedback, often

matching/surpassing expert designed reward functions.
* Reward models - LLM/VLM maps trajectories to scalar
rewards or provides preferences.
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Preferences

Open Problems
* Grounding - bridge natural language plans to low-level control without brittle interfaces.
* Inherent bias —debias decisions, plans, and rewards; analyze failure modes.

» Representation - fuse numeric sensors with language for precise control; explore multi-modal encoders. @ P
e Action advice —use LLMs/VLMs as imperfect but helpful teachers to accelerate RL agent learning.
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